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WAVE PROPAGATION AND RESONANCE PHENOMENA

IN INHOMOGENEOUS MEDIA

UDC 517.947+534.14+534.2+517.9S. V. Sukhinin

The waveguide and resonance properties of inhomogeneous penetrable one-dimensional-periodical
structures that consist of two different media are studied within the framework of a one-dimensional
approximation. The pass and stop bands are determined. A dispersion relation for all the waveg-
uide modes is obtained. Explicit expressions for low waveguide frequencies and corresponding phase
velocities of waveguide modes for mono- and polydisperse media are found. The influence of the
polydispersity of the sizes of heterogeneities on the low frequencies of a pass band is considered. A
pass band in the range of low frequencies is detected. It is shown that the polydispersity does not
affect the waveguide properties of a medium at low frequencies of the first pass band. The resonance
phenomena in periodical media and structures are investigated. The resonance phenomena are shown
to occur for an unlimited discrete set of frequencies if the group velocity of the waveguide mode for
them is zero; in this case, the growth of the oscillation amplitude is localized in the neighborhood of
a source (localization of the resonance). A synchrophasotron resonance at which the infinite chain
of oscillation sources has the oscillations phase of a corresponding traveling wave from the pass band
is detected.

Introduction. The study of wave propagation in inhomogeneous one-dimensional media is of significance
for the solution of applied problems. The examples of such media upon propagation of acoustic waves in them are
liquids with gas bubbles, composites, inhomogeneous mixtures with the periodical inclusion of components, foams,
and porous and granular structures. For applied problems, of importance is to study the decelerating properties of
inhomogeneous one-dimensional-periodical structures, determine the pass and stop bands, and study the resonance
properties of periodical inhomogeneous structures with compact and distributed oscillation sources.

The first results and the bibliography are given by Brillouin and Parodi [1] and Sanchez-Palensia [2]. In the
present work which is an extension and generalization of [3–5], the waveguide, decelerating, and resonance properties
of inhomogeneous one-dimensional-periodical penetrable media of the type of a chain of gas bubbles in a liquid or
a structured composite are studied within the framework of the one-dimensional theory. Within the framework
of the two-dimensional theory, the wave propagation near the one-dimensional-periodical chains of penetrable and
impenetrable obstacles was investigated in [6].

The studies performed in the present work can serve as a basis for the development of acoustic filters and
decelerating media and the optimization of damping materials. The studies of resonance phenomena can be used,
for example, for calculation of the chain of explosions for particle acceleration or production of absorbing materials.

1. Formulation of the Problems and Their Properties of Symmetry. The direct methods of studying
the wave propagation in inhomogeneous periodical structures cannot be implemented because of a large number
of heterogeneities. In this connection, the study of the fine structure of the frequency spectrum of a problem that
describes steady-state oscillations in inhomogeneous one-dimensional-periodical media becomes important.
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Let an inhomogeneous one-dimensional-periodical medium consist of two components M1 = {c1, ρ1} and
M2 = {c2, ρ2}, where ci and ρi is the velocity of sound and the density in the quiescent state (i = 1, 2) and p(1)

and p(2) are the acoustic pressure perturbations in the first and second media, respectively. The medium M1 is
assumed to be denser than the medium M2. The examples of the media in which τ �∞ (τ = ρ2/ρ1 is the density
ratio) are a liquid and a gas. One can consider that a chain of bubbles of the medium M1 is placed in the medium
M2 or a chain of drops of the medium M2 is placed in the medium M1. It is assumed that the chain is spatially
periodical. The following notation is used: æ = c1/c2 ia the ratio between the velocities of sound, ω is the circular
frequency of oscillations, λ = ωL/c1 is the dimensionless oscillation frequency, L is the smallest spatial period of
the one-dimensional-periodical media, and x̃ = x/L is the dimensionless spatial variable (hereafter, the tilde above
x is omitted). In these variables, the smallest spatial period of an inhomogeneous medium is equal to unity. The
subscripts 1 and 2 correspond to the media M1 and M2, respectively. The part of the medium whose length is equal
to unity is called the fundamental cell.

Equations and Boundary Conditions. The steady-state acoustic pressure oscillations with circular frequency
ω in the media M1 and M2 are described by the equations

p(1)
xx + λ2p(1) = 0, p(2)

xx + λ2æ2p(2) = 0. (1.1)

The following conditions of pressure and velocity continuity (dynamic and kinematic conditions) should be fulfilled
at the boundaries of contact of the media:

p(1) = p(2), τp(1)
x = p(2)

x . (1.2)

Hereinafter, relations (1.1) and (1.2) are called the problem T which completely describes the propagation of acoustic
waves in inhomogeneous one-dimensional-periodical media.

Taking into Account the Interaction of Adjacent Heterogeneities. Let the medium M2 (gas) of extent D (a
single bubble) be in the medium M1 (liquid) and the coordinate origin be chosen at the center of M2. Within
the framework of the one-dimensional theory, the free acoustic oscillations of a single gas bubble in a liquid are
described by Eqs. (1.1) and the boundary conditions (1.2). In addition, the external medium should be subject to
radiation conditions which have the following form for an acoustic pressure perturbation:

p(1) = a1 exp (iλx) (x > D/2), p(2) = a2 exp (−iλx) (x < −D/2). (1.3)

The free oscillations of the bubble are determined by a set of complex numbers λ∗k (k = 1, 2, . . .) for which nontrivial
solutions of the problem B = {(1.1), (1.2), (1.3)} exist. These numbers are called the quasi-eigenfrequencies of the
problem B, and the corresponding oscillations are called the quasi-eigenoscillations. One can show that

λ∗k = kπ/(æD) + i ln [(æ + τ)/(æ− τ)]/(æD) (k = 1, 2, . . .). (1.4)

It is noteworthy that the quasi-eigenfrequencies of the problem B are a continuous function of τ (0 < τ <∞).
The physical meaning of the real and imaginary parts of the quasi-eigenfrequencies is clear [2]: the quantity Re (λ∗k) is
the dimensionless frequency of quasi-eigenoscillations, and the damping in time at a fixed point of space is determined
by the expression p(x, t) = A(x) exp [−c1 Im (λ∗k)t]. As τ → 0, the quasi-eigenfrequencies tend to the eigenfrequencies
of the Neumann problem in the domain −D/2 < x < D/2. The quasi-eigenvalues of a Helmholtz resonator for a
small parameter (radius of the throat) have a similar property [2]. For this resonator, the quasi-eigenvalues and the
corresponding oscillations with a wavelength much larger than its geometrical dimensions exist, i.e., the so-called
Helmholtz mode [2]. The quasi-eigenvalue of λ∗0(τ) such that lim

τ→0
λ∗0(τ) = 0 and Re [λ∗0(τ)] 6= 0 corresponds to this

mode; the latter means the existence of eigenoscillations. It follows from (1.4) that λ∗0 = i ln [(æ+τ)/(æ−τ)]/(æD)
and Re (λ∗0) = 0, i.e., there are no eigenoscillations of the Helmholtz mode for a single bubble.

A structure that consists of two gas bubbles in a liquid possesses a different property. The quasi-
eigenfrequency of oscillations λ are determined from the equation

(æ + τ)2 exp [−(1/2)iλ(H + 2æL)] + (τ2 − æ2) exp [(1/2)iλ(H + 2æL)]

= (τ2 − æ2) exp [−(1/2)iλ(−H + 2æL)] + (æ− τ)2 exp [(1/2)iλ(−H + 2æL)]. (1.5)

If τ = 0, the quasi-eigenfrequencies become the eigenfrequencies of oscillations and they are determined by the
equality cos (λH/2) sin(λæL) = 0. As a result of the interaction between the bubbles, oscillations in the Helmholtz
mode appear. The closest-to-zero quasi-eigenfrequency λ∗0 of an ensemble that consists of two bubbles is calculated
with the use of Eq. (1.5):
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λ∗0 = ±τ
√
τ2H2 + 4τ2æ2D2 + 4τ3HD

τ2H2 + 2τ2æ2D2 + 2τ3HD + 2æ4L2 + 2æ2τHL

− i τ(Hτ + 2æ2L)
τ2H2 + 2τ2æ2D2 + 2τ3HD + 2æ4L2 + 2æ2τHL

. (1.6)

Here D is the bubble diameter, H is the distance between the bubbles, and i is the imaginary unity. It is noteworthy
that the frequency characteristic of the oscillations of the ensemble from two bubbles (1.6) differs greatly from the
characteristic of the oscillations of one bubble (1.4). Making allowance for the interaction between the bubbles gives
rise to the appearance of low-frequency eigenoscillations.

It follows from the above example that the usual averaging methods can cause the loss of solutions or
the distortion of the qualitative properties of the structure behavior if the interaction of the entire ensemble of
heterogeneities is not taken into account. Hereafter, the interaction of all the heterogeneities in the one-dimensional-
periodical chain is taken into account with the use of the representations of admissible symmetry groups in the
space of possible solutions of the problem.

Symmetry Properties. Because the wave equation is invariant with respect to any locally plane symmetries,
the symmetry of the problem T is determined by the symmetry of the chain of heterogeneities. All the chains of
heterogeneities can be classified according to the groups of admissible symmetries. Using the methods of the theory
of symmetry groups [7, 8], one can show that only two types of one-dimensional-periodical chains of heterogeneities
are possible. Type I: a chain of heterogeneities that admits only the translation group {T1} [7], where T1〈u(x, y)〉 =
u(x, y + 1), Tn = (T1)n. Type II: a chain that admits only the symmetry group {T1, D

x
1}, where Dx

1 〈u(x, y)〉 =
u(x,−y). Figure 1 shows one of the possible one-dimensional-periodical chains of type II, and Fig. 6 shows that of
type I. One-dimensional-periodical chains that admit another symmetry groups do not exist [7, 8].

The symmetry group ST of the problem T allows us to decompose the space of admissible solutions of this
problem into subspaces invariant with respect to the representations of ST in the space of solutions. By definition,
all the one-dimensional-periodical structures admit the group {T1}; therefore, the space of admissible solutions can
be decompose into subspaces invariant with respect to this group [9]. For the function p(x) which belongs to such
subspaces, a value of ξ (−π 6 ξ 6 π) such that T1〈p(x)〉 ≡ p(x+ 1) ≡ exp (iξ)p(x) exists. Therefore,

p(x) ≡ a(x) exp(iξx), a(x+ 1) ≡ a(x). (1.7)

Here i is the imaginary unity and ξ is the phase shift of oscillations in the adjacent fundamental domains of the
translation group. Hereafter, the problem T with condition (1.7) is called the problem T (ξ).

For heterogeneity chains of type II, four one-dimensional nonreducible representations of a symmetry group
ST = {T1, D

x
1} in the space of admissible solutions [9] are possible:

{τ1(T1) = −1, τ1(Dx
1 ) = +1}, {τ2(T1) = −1, τ2(Dx

1 ) = −1},
(1.8)

{τ3(T1) = +1, τ3(Dx
1 ) = +1}, {τ4(T1) = +1, τ4(Dx

1 ) = −1}.

It suffices to study the problem T (ξ) in a certain fundamental cell of a translation group (a certain period
of the structure), for example, in the interval 0 < x < 1. The solution on the entire straight line can be obtained
by continuation of the solution of the problem in one period with the use of (1.7).

Waveguide Modes and In-Phase Oscillations. The traveling waves that propagate in a chain of heterogeneities
without damping correspond to the waveguide modes of oscillations.

Definition 1. The nontrivial solution of the problem T (ξ) for ξ 6= 0 is called the waveguide function. The
corresponding value of the parameter λ∗ is called the dimensionless waveguide frequency (waveguide eigenvalue),
and ω∗ = λ∗c1/L is called the cyclic waveguide frequency of the problem T (ξ).

If ξ = 0, the oscillations are in-phase in any adjacent fundamental cells of a translation group. The form of
these oscillations is described by the problem T for functions invariant with respect to the representations τ3 and
τ4 from (1.8).

By virtue of Eq. (1.7), any waveguide function has the form p(x) ≡ a(x) exp (iξx). The quantity ξ is the wave
number of the waveguide mode, the amplitude of the waveguide mode a(x+1) ≡ a(x) is a space-periodical complex-
valued function, λ∗k is the dimensionless waveguide frequency, and the relations λ∗k = λ∗k(ξ), where k = 1, 2, . . . ,K,

are the dispersion relations for waveguide modes. The semienclosed intervals σn =
(

inf
06ξ6π

[λn(ξ)], sup
06ξ6π

[λn(ξ)]
]

(n = 1, 2, . . .) of dimensionless frequencies are the pass bands for the waveguide modes λk = λk(ξ) (k = 1, 2, . . . ,K).
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Fig. 1. Monodisperse chain of bubbles.

To verify the correctness of the problem T (ξ) and numerical studies, we need the following statement.
Statement 1. The set of waveguide frequencies of the problem T (ξ) is discrete on a real axis.
Proof. The discreteness of waveguide frequencies in the topology of a real axis follows from the analyticity of

the resolvent of the problem T (ξ). If one multiplies (1.1) by the complex conjugate functions p1 and p2, respectively,
and integrate by parts over the fundamental cell of a translation group, one can obtain the relation∫

M1

τ [ |p(1)
x |2 − λ2|p(1)|2] +

∫
M2

[ |p(2)
x |2 − λ2æ2|p(2)|2] = 0,

from which follows the real-valued character of the waveguide frequencies of the problem T (ξ). Statement 1 is
proved.

2. Waveguide Properties of a Monodisperse Chain of Heterogeneities. For a one-dimensional-
periodical chain of identical heterogeneities of type II (monodisperse chain) (Fig. 1), the problem T (ξ) is the
simplest problem. Let the length of one connected layer of the medium M1 (linear concentration) be equal to k1,
and the length of one connected layer of the medium M2 (linear concentration) be equal to k2. Since 1 = k1 + k2 is
the dimensionless spatial period of the structure (Fig. 1), we have k2 = 1−k1, and it suffices to use k1 (hereinafter,
k1 = k) to describe completely the monodisperse chain of heterogeneities. The oscillations in the fundamental cell
0 6 x 6 1 are described by Eqs. (1.1), the transmission conditions (1.2), and the conditions of the phase shift of
oscillations in the adjacent fundamental cells (1.7). The conditions at the boundaries of the fundamental cell

p(1)(−k/2) exp (iξ) = p(2)(1− k/2), τp(1)
x (−k/2) exp (iξ) = p(2)

x (1− k/2) (2.1)

are equivalent to (1.7).
Hereinafter, Eqs. (1.1), (1.2), and (1.7) are called the problem TM(ξ). It is noteworthy that the family

of problems TM(ξ) completely takes into account the possible interactions of all the heterogeneities in a one-
dimensional-periodical chain.

Dispersion Relations. In the domains {x: − k/2 6 x 6 k/2} and {x: k/2 6 x 6 1 − k/2} occupied
by the media M1 and M2, the general solution of Eq. (1.1) has the form p1 = a1 exp (iλx) + b1 exp (−iλx) and
p2 = a2 exp (iλæx) + b2 exp (−iλæx). Therefore, the problem TM(ξ) is equivalent to the linear system of equations
A(λ)Y = 0 with desired (a1, b1, a2, b2) = Y . The matrix A(λ) of this system has the form

A(λ) =



exp

(
i
λk

2

)
exp

(
− i λk

2

)
− exp

(
i
λkæ

2

)
− exp

(
− i λkæ

2

)
τ exp

(
i
λk

2

)
−τ exp

(
− i λk

2

)
−æ exp

(
i
λkæ

2

)
æ exp

(
− i λkæ

2

)
exp

[
i

(
− λk

2
+ ξ

)]
exp

[
i

(
λk

2
+ ξ

)]
− exp

[
iλæ

(
1− k

2

)]
− exp

[
− iλæ

(
1− k

2

)]
τ exp

[
i

(
− λk

2
+ ξ

)]
−τ exp

[
i

(
λk

2
+ ξ

)]
−æ exp

[
iλæ

(
1− k

2

)]
æ exp

[
− iλæ

(
1− k

2

)]


.

A nontrivial solution of the problem TM(ξ) exists if the determinant of matrix A(λ) is equal to zero. Therefore, the
waveguide frequencies of problem TM(ξ) are the zeros of the analytical function det [A(λ)]. Whence, the waveguide
frequencies λ∗(τ, ξ) of the problem TM(ξ) are discrete on a real axis and they are a continuous function of τ (on
the set 0 6 τ < 1) and ξ ( |ξ| 6 π). For fixed æ, τ , and k, the equation det [A(λ)] = 0 is dispersion relations for
all the waveguide modes λn = λn(ξ) (n = 1, 2, . . .), which are connected components of the set of all waveguide
frequencies of the problem TM(ξ) on the plane (ξ, λ).
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Fig. 2 Fig. 3

Fig. 2. The pass-band width of the creeping mode versus concentration.

Fig. 3. Phase velocities of the creeping mode versus the wave number.

For all the waveguide modes of the problem TM(ξ), the dispersion relations have the form

4τæ[1 + cos (2ξ)]− (τ + æ)2{cos[λ(k − æk + æ) + ξ] + cos [λ(k − æk + æ)− ξ]}

+ (τ − æ)2{cos [λ(k + æk − æ) + ξ] + cos [λ(k + æk − æ)− ξ]} = 0. (2.2)

The pass {σn}n=1,2,... and stop bands are completely described by (2.2).
Creeping Mode. The study of the propagation of long (low-frequency) waves in a one-dimensional-periodical

chain of heterogeneities is most important for various applications. In this case, the wavelength considerably exceeds
the structure period and the heterogeneity sizes. The waveguide frequencies of the problem TM(ξ) are a continuous
function of τ , and λ = 0 is the solution of Eq. (2.2) for τ = 0. It follows that a waveguide frequency λ∗1(τ)
of the problem TM(ξ) such that lim

τ→0
λ∗1(τ) = 0 exists. This value corresponds to the lowest frequency of the

waveguide oscillations of a monodisperse chain of bubbles. Hereafter, an oscillation mode that corresponds to the
lowest waveguide frequency is called the creeping mode. It is noteworthy that the wavelength of the creeping mode
exceeds the heterogeneity sizes. If one expands the determinant of matrix A(λ) or dispersion relations (2.2) into a
Taylor series in terms of λ at the point λ = 0 and ignores terms of the order λ3, one can obtain an approximate
expression for the low waveguide frequencies of the creeping mode

λ1(τ, ξ) =
√

2τ(1− cos ξ)
/√

(k + τ − kτ)(kτ − kæ2 + æ2). (2.3)

For small τ , the representation λ1(τ, ξ) =
√

2τ(1− cos ξ)
/√

æ2k(1− k) is true. For water and air, we have
æ = 1400/330 and τ = 0.001.

Figure 2 shows the width of the pass band of the waveguide frequency of the creeping mode versus the water
concentration for fixed values of the parameters of two media (water and air). It is necessary to note that the
waveguide frequency of the creeping mode depend strongly on the linear concentration k; for k ≈ 0 and k ≈ 1, the
pass band for the creeping mode extends unboundedly. For various applications in which τ � 1, it is important
that there is a global minimum of the waveguide frequency as a function of linear concentration for k = 0.5. By
virtue of (2.3), the following statement is true.

Statement 2. The smallest value of the waveguide frequency of the creeping mode as a function of linear
concentration k is reached at the point k = 1/2.

Condition (1.7) allows one to present any solution of the problem TM(ξ) as p(x) = a(x) exp (iξx), where
a(x) ≡ a(x+ 1) is the amplitude of waveguide oscillations. This representation makes it possible to consider ξ as a
wave number. The dependence of the phase velocity c(1)

ph (ξ, k, τ) of the waveguide mode of a monodisperse chain of
bubbles of the creeping mode on the wave number ξ is shown in Fig. 3. It is noteworthy that the phase velocity of
waveguide modes in a monodisperse chain of bubbles can be smaller than the velocity of sound in the bubbles and
the ambient medium.
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Fig. 4 Fig. 5

Fig. 4. Dispersion curves of the second (a) and third (b) waveguide modes (k = 0.99).

Fig. 5. Pressure field for various waveguide modes.

Long-Wave Approximation. For various applications, it is expedient to consider the asymptotic behavior of
the waveguide frequencies and phase velocities of the creeping mode provided that the wavelength is considerably
larger than the spatial period of a chain of bubbles. For the creeping waveguide mode corresponding to the waveguide
frequency λ1(ξ, k, τ), the wavelength Lw = 2π/ξ. For large values of Lw, the wavenumber of the waveguide mode
is close to zero (ξ ≈ 0). For small ξ [see (2.3)], we have λ1(ξ, k, τ) = ξ

√
τ
/√

(k + τ − kτ)(kτ − kæ2 + æ2).

The dimensionless phase velocity c
(1)
ph (ξ, k, τ) of the creeping mode is determined as c(1)

ph (ξ, k, τ) = λ1(ξ, k, τ)/ξ =
√
τ/
[
æ
√
k(1− k) ] = (c2/c1)

√
τ/k(1− k).

It is noteworthy that the phase velocity of a long wave of the creeping mode depends only on the concentration
and the ratio between the velocities of sound and the ratio between the densities of two media forming the chain.

Higher Waveguide Modes. Alongside with the creeping mode, higher-frequency waveguide modes can prop-
agate in the chain of bubbles. The number of these modes is infinite. For small values of the parameter τ , it is
possible to consider that the corresponding waveguide frequencies are localized in the vicinity of the correspond-
ing eigenvalues of the Dirichlet problems in domain No. 1 and the Neumann problems in domain No. 2 for a
one-dimensional Laplace operator with allowance for the velocities of sound.

Figure 4 shows dispersion curves for the second and third waveguide modes (the creeping mode is considered
to be the first mode) in a chain consisting of water and air. Because the dimensionless length of an air bubble is
equal to 0.01, the first waveguide frequencies are close to the eigenvalues of the Dirichlet problem for the Laplace
operator in the interval [0, 0.99], which are, in turn, close to the numbers nπ (n = 0, 1, 2, . . .). This is supported
by calculations as well. The intervals of variation of the dispersion curves on the ordinate axis shown in Fig. 4
determine the pass bands of the chain.

Mechanics of Waveguide Oscillations. Figure 5 shows the form of waveguide modes (acoustic-pressure
field) for the values of the parameters of the water–air chain (ξ = π and k = k1 = 0.5) and the values of the
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Fig. 6. Polydisperse chain of bubbles.

Fig. 7. Frequencies of the second waveguide modes versus the bubble sizes in a polydisperse chain.

dimensionless waveguide frequencies λ1 = 0.02981051656, λ2 = 1.480950276, λ3 = 2.962316191, λ4 = 4.442661187,
λ5 = 5.924166151, λ6 = 6.282808282, λ7 = 7.4059953558, and λ8 = 8.886050022 (curves 1–8, respectively). The
form of waveguide modes (Fig. 5) shows the mechanics of oscillations. For example, the oscillations are localized
in water for λ6 and air for λ2. Upon oscillations in the first mode, the water drops move as a whole, and the air
bubbles act as springs.

In real media, monodisperse structures occur rarely; therefore, it is worthwhile studying the propagation of
acoustic oscillations in polydisperse chains of heterogeneities. The simplest example is a periodical chain with two
different bubbles in the period.

3. Waveguide Properties of a Polydisperse Chain of Heterogeneities. Let two inclusions of the
medium M1 (water) with sizes k1 and k3 (k1 + k3 = k) and two inclusions of the medium M2 (air bubbles) with
sizes k2 and k4 be contained in one period of the chain (Fig. 6). The waveguide modes of the chain are described in
one spatial period by relations (1.1) and (1.2) and the phase-shift conditions (1.7) or (2.1), which are equivalent to
the system of equations for eight unknowns AP (λ)Y = 0. The matrix AP (λ) is constructed in the same manner as
for a monodisperse chain with appropriate changes. It follows from Statement 1 that the waveguide frequencies of
oscillations of the chain are real. The lowest waveguide frequency of oscillations of the polydisperse chain is found
from the equation det [AP (λ)] = 0. For small τ , this frequency is calculated from the formula

λ1(ξ, k, τ) =
√

2τ(1− cos ξ)/[(k + τ − kτ)(kτ − kæ2 + æ2)]. (3.1)

The right side of (3.1) coincides with the right side of the dispersion relation for the creeping mode (2.3).
For small values of τ and with other parameters being equal, depending on the concentration a minimum

of the waveguide frequency, which is reached at the point k = 0.5, exists. For small τ , the lowest waveguide
frequency of a polydisperse chain of bubbles is determined only by concentration. This means that, for τ � 1, the
polydispersity of a chain of bubbles has no significance for the creeping mode.

One can show that the polydispersity influences higher-order waveguide modes compared to the creeping
mode. For a water–air chain, Fig. 7 shows the frequency of the second waveguide mode versus the sizes of the first
water drop k1 and the first air bubble k2 at a fixed water concentration of k = k1 + k3 = 0.9. The polydispersity
of the chain of heterogeneities affects greatly the frequencies of the second waveguide mode.
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Fig. 8. Fine structure of the spectrum.

4. Resonance Properties of the Chain and the Spectrum Structure. The spectral properties of the
problem T and the dispersion relations for the mono- and polydisperse chains of heterogeneities allow us to describe
their resonance properties.

Fine Structure of the Spectrum. Dispersion relations (2.2) for a monodisperse chain and (3.1) for a polydis-
perse chain make it possible to determine the pass and stop bands of the problem of the propagation of acoustic
waves through a one-dimensional-periodical chain of heterogeneities. It is important that, for mono- and polydis-
perse chains, a pass band that corresponds to the creeping mode, adjoins the zero (the pass band σ1 in Fig. 8).

It is necessary to note that the number of pass and stop bands is infinite. The fine structure of the spectrum of
the frequencies of a problem that describes the propagation of acoustic waves through a one-dimensional-periodical
chain of heterogeneities is shown in Fig. 8 (σn and sn are the pass and stop bands, respectively, where n = 1, 2, . . .).

To study the propagation of wave trains and the resonance properties of one-dimensional-periodical chains
of heterogeneities, it is necessary to examine the group velocity C

(n)
g (ξ, k, τ) of the waveguide modes λn = λn(ξ)

(n = 1, 2, . . .). By virtue of the symmetry of the problem T (ξ) with respect the wavenumber ξ at the points ξ = mπ

(m = 0,±1,±2, . . .), the equalities C(n)
g (0, k, τ) = 0 and C

(n)
g (±π, k, τ) = 0 hold for corresponding values of the

waveguide frequencies λn(0) and λn(±π), where n = 1, 2, . . . . One should note that the values of the waveguide
frequencies λn(0) and λn(±π) are the boundaries of the pass and stop bands; the values of λn(0) belong to the stop
bands sn, and the values of λn(±π) belong to the pass bands σn (n = 1, 2, . . .).

Localized Resonance. Let a compact source with frequency λs be in a one-dimensional-periodical chain of
penetrable heterogeneities. Because the group velocity is the propagation velocity of the energy of the waveguide
mode, at frequencies of the source λs 6= 0 belonging to the boundaries of pass bands, resonance phenomena arise.
In this case, at any moment of time the source energy is localized in its neighborhood. A similar phenomenon arises
in the case where the oscillation frequency belongs to a certain stop band ρn (n = 1, 2, . . .). The following theorem
is true.

Theorem 1. If the frequency of an oscillation source λs 6= 0 coincides with the boundary of a certain pass
band or belongs to a certain stop band, then the source energy is localized in its neighborhood at each moment of
time: the oscillation amplitude near the source increases as a function of time (resonance phenomena occur).

For resonance values of the frequency of forced oscillations, concrete values of the amplitude are determined
by the saddle-point method [10] with the use of (2.2).

Synchrophasotron Resonance. Let the oscillation sources f(x, t) such that f(x, t) = exp (−iωst)f1(x)x∈M1 ,
f(x, t) = exp (−iωst)f2(x, t)x∈M2 , and

f(x+ 1, t) ≡ exp (iξ)f(x, t) ≡ exp (iξ − iωst)f(x) (4.1)

be in a chain of penetrable heterogeneities. The acoustic pressure perturbation satisfies the equations of steady-state
oscillations with dimensionless frequency λs = Lωs/c1, which have the form

p(1)
xx + λ2

sp
(1) = f1(x), p(2)

xx + λ2
sæ

2p(2) = f2(x). (4.2)

Transmission conditions (1.2) should be satisfied at the boundaries of two media. Problem (4.2), (1.2) describes
forced oscillations in a chain of heterogeneities; hereafter, it is called the problem TF (ξ). Because the oscillation
sources satisfy the phase-shift condition (4.1) at a certain value of ξ, the solution of the problem TF (ξ) passes to the
solution of the same problem under the action of any element of the translation group {T1} and satisfies condition
(1.7). Let λ∗(ξ) be a certain waveguide frequency of the problem T (ξ). Since T (ξ) is the homogeneous problem
TF (ξ), in the case where the dimensionless oscillation frequency of the source λs tends to a certain waveguide
frequency λ∗(ξ), a resonance occurs. The amplitude of the running wave increases unboundedly with time (as in
synchrophasotrons). The following theorem is true.
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Theorem 2. If in a periodical chain of heterogeneities the oscillation sources with phase shift ξ are dis-
tributed periodically in adjacent fundamental domains of the translation group (4.1), a resonance arises when the
oscillation frequency of the source λs coincides with a certain waveguide frequency λ∗(ξ). This resonance is called
a synchrophasotron-type resonance.

5. Conclusions. In calculating the wave propagation in inhomogeneous media, it is necessary to take into
account the interaction between adjacent heterogeneities. This changes significantly the waveguide and resonance
properties of an inhomogeneous medium and gives rise to the appearance of a series of low-frequency waveguide
oscillations near the chain of heterogeneities. The waves that creep over the chain correspond to these oscillations.
The low-frequency eigenoscillations caused by the interaction of adjacent heterogeneities should be taken into ac-
count in studying the propagation of the initial perturbation and the response of the structure to forced oscillations.
The polydispersity of bubbles does not exert a great effect on the low-frequency waveguide oscillations of an inho-
mogeneous medium if the density ratio tends to zero (infinity). In this case, the lowest oscillation frequencies are
determined by the linear concentration of bubbles, the period of the chain, and the phase shift of oscillations.
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